ldns  1.7.0
dnssec.c
Go to the documentation of this file.
1 /*
2  * dnssec.c
3  *
4  * contains the cryptographic function needed for DNSSEC in ldns
5  * The crypto library used is openssl
6  *
7  * (c) NLnet Labs, 2004-2008
8  *
9  * See the file LICENSE for the license
10  */
11 
12 #include <ldns/config.h>
13 
14 #include <ldns/ldns.h>
15 #include <ldns/dnssec.h>
16 
17 #include <strings.h>
18 #include <time.h>
19 
20 #ifdef HAVE_SSL
21 #include <openssl/ssl.h>
22 #include <openssl/evp.h>
23 #include <openssl/rand.h>
24 #include <openssl/err.h>
25 #include <openssl/md5.h>
26 #include <openssl/bn.h>
27 #include <openssl/rsa.h>
28 #ifdef USE_DSA
29 #include <openssl/dsa.h>
30 #endif
31 #endif
32 
33 ldns_rr *
35  const ldns_rr_type type,
36  const ldns_rr_list *rrs)
37 {
38  size_t i;
39  ldns_rr *candidate;
40 
41  if (!name || !rrs) {
42  return NULL;
43  }
44 
45  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
46  candidate = ldns_rr_list_rr(rrs, i);
47  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_RRSIG) {
48  if (ldns_dname_compare(ldns_rr_owner(candidate),
49  name) == 0 &&
51  == type
52  ) {
53  return candidate;
54  }
55  }
56  }
57 
58  return NULL;
59 }
60 
61 ldns_rr *
63  const ldns_rr_list *rrs)
64 {
65  size_t i;
66  ldns_rr *candidate;
67 
68  if (!rrsig || !rrs) {
69  return NULL;
70  }
71 
72  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
73  candidate = ldns_rr_list_rr(rrs, i);
74  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_DNSKEY) {
75  if (ldns_dname_compare(ldns_rr_owner(candidate),
76  ldns_rr_rrsig_signame(rrsig)) == 0 &&
78  ldns_calc_keytag(candidate)
79  ) {
80  return candidate;
81  }
82  }
83  }
84 
85  return NULL;
86 }
87 
88 ldns_rdf *
90  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
91  return ldns_rr_rdf(nsec, 1);
92  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
93  return ldns_rr_rdf(nsec, 5);
94  } else {
95  return NULL;
96  }
97 }
98 
99 /*return the owner name of the closest encloser for name from the list of rrs */
100 /* this is NOT the hash, but the original name! */
101 ldns_rdf *
103  ATTR_UNUSED(ldns_rr_type qtype),
104  const ldns_rr_list *nsec3s)
105 {
106  /* remember parameters, they must match */
107  uint8_t algorithm;
108  uint32_t iterations;
109  uint8_t salt_length;
110  uint8_t *salt;
111 
112  ldns_rdf *sname, *hashed_sname, *tmp;
113  bool flag;
114 
115  bool exact_match_found;
116  bool in_range_found;
117 
118  ldns_status status;
119  ldns_rdf *zone_name;
120 
121  size_t nsec_i;
122  ldns_rr *nsec;
123  ldns_rdf *result = NULL;
124 
125  if (!qname || !nsec3s || ldns_rr_list_rr_count(nsec3s) < 1) {
126  return NULL;
127  }
128 
129  nsec = ldns_rr_list_rr(nsec3s, 0);
130  algorithm = ldns_nsec3_algorithm(nsec);
131  salt_length = ldns_nsec3_salt_length(nsec);
132  salt = ldns_nsec3_salt_data(nsec);
133  iterations = ldns_nsec3_iterations(nsec);
134 
135  sname = ldns_rdf_clone(qname);
136 
137  flag = false;
138 
139  zone_name = ldns_dname_left_chop(ldns_rr_owner(nsec));
140 
141  /* algorithm from nsec3-07 8.3 */
142  while (ldns_dname_label_count(sname) > 0) {
143  exact_match_found = false;
144  in_range_found = false;
145 
146  hashed_sname = ldns_nsec3_hash_name(sname,
147  algorithm,
148  iterations,
149  salt_length,
150  salt);
151 
152  status = ldns_dname_cat(hashed_sname, zone_name);
153  if(status != LDNS_STATUS_OK) {
154  LDNS_FREE(salt);
155  ldns_rdf_deep_free(zone_name);
156  ldns_rdf_deep_free(sname);
157  ldns_rdf_deep_free(hashed_sname);
158  return NULL;
159  }
160 
161  for (nsec_i = 0; nsec_i < ldns_rr_list_rr_count(nsec3s); nsec_i++) {
162  nsec = ldns_rr_list_rr(nsec3s, nsec_i);
163 
164  /* check values of iterations etc! */
165 
166  /* exact match? */
167  if (ldns_dname_compare(ldns_rr_owner(nsec), hashed_sname) == 0) {
168  exact_match_found = true;
169  } else if (ldns_nsec_covers_name(nsec, hashed_sname)) {
170  in_range_found = true;
171  }
172 
173  }
174  if (!exact_match_found && in_range_found) {
175  flag = true;
176  } else if (exact_match_found && flag) {
177  result = ldns_rdf_clone(sname);
178  /* RFC 5155: 8.3. 2.** "The proof is complete" */
179  ldns_rdf_deep_free(hashed_sname);
180  goto done;
181  } else if (exact_match_found && !flag) {
182  /* error! */
183  ldns_rdf_deep_free(hashed_sname);
184  goto done;
185  } else {
186  flag = false;
187  }
188 
189  ldns_rdf_deep_free(hashed_sname);
190  tmp = sname;
191  sname = ldns_dname_left_chop(sname);
192  ldns_rdf_deep_free(tmp);
193  }
194 
195  done:
196  LDNS_FREE(salt);
197  ldns_rdf_deep_free(zone_name);
198  ldns_rdf_deep_free(sname);
199 
200  return result;
201 }
202 
203 bool
205 {
206  size_t i;
207  for (i = 0; i < ldns_pkt_ancount(pkt); i++) {
210  return true;
211  }
212  }
213  for (i = 0; i < ldns_pkt_nscount(pkt); i++) {
216  return true;
217  }
218  }
219  return false;
220 }
221 
222 ldns_rr_list *
224  const ldns_rdf *name,
225  ldns_rr_type type)
226 {
227  uint16_t t_netorder;
228  ldns_rr_list *sigs;
229  ldns_rr_list *sigs_covered;
230  ldns_rdf *rdf_t;
231 
233  name,
236  );
237 
238  t_netorder = htons(type); /* rdf are in network order! */
239  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, LDNS_RDF_SIZE_WORD, &t_netorder);
240  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
241 
242  ldns_rdf_free(rdf_t);
244 
245  return sigs_covered;
246 
247 }
248 
249 ldns_rr_list *
251 {
252  uint16_t t_netorder;
253  ldns_rr_list *sigs;
254  ldns_rr_list *sigs_covered;
255  ldns_rdf *rdf_t;
256 
257  sigs = ldns_pkt_rr_list_by_type(pkt,
260  );
261 
262  t_netorder = htons(type); /* rdf are in network order! */
264  2,
265  &t_netorder);
266  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
267 
268  ldns_rdf_free(rdf_t);
270 
271  return sigs_covered;
272 
273 }
274 
275 /* used only on the public key RR */
276 uint16_t
278 {
279  uint16_t ac16;
280  ldns_buffer *keybuf;
281  size_t keysize;
282 
283  if (!key) {
284  return 0;
285  }
286 
289  ) {
290  return 0;
291  }
292 
293  /* rdata to buf - only put the rdata in a buffer */
294  keybuf = ldns_buffer_new(LDNS_MIN_BUFLEN); /* grows */
295  if (!keybuf) {
296  return 0;
297  }
298  (void)ldns_rr_rdata2buffer_wire(keybuf, key);
299  /* the current pos in the buffer is the keysize */
300  keysize= ldns_buffer_position(keybuf);
301 
302  ac16 = ldns_calc_keytag_raw(ldns_buffer_begin(keybuf), keysize);
303  ldns_buffer_free(keybuf);
304  return ac16;
305 }
306 
307 uint16_t ldns_calc_keytag_raw(const uint8_t* key, size_t keysize)
308 {
309  unsigned int i;
310  uint32_t ac32;
311  uint16_t ac16;
312 
313  if(keysize < 4) {
314  return 0;
315  }
316  /* look at the algorithm field, copied from 2535bis */
317  if (key[3] == LDNS_RSAMD5) {
318  ac16 = 0;
319  if (keysize > 4) {
320  memmove(&ac16, key + keysize - 3, 2);
321  }
322  ac16 = ntohs(ac16);
323  return (uint16_t) ac16;
324  } else {
325  ac32 = 0;
326  for (i = 0; (size_t)i < keysize; ++i) {
327  ac32 += (i & 1) ? key[i] : key[i] << 8;
328  }
329  ac32 += (ac32 >> 16) & 0xFFFF;
330  return (uint16_t) (ac32 & 0xFFFF);
331  }
332 }
333 
334 #ifdef HAVE_SSL
335 DSA *
337 {
338  return ldns_key_buf2dsa_raw((const unsigned char*)ldns_buffer_begin(key),
339  ldns_buffer_position(key));
340 }
341 
342 DSA *
343 ldns_key_buf2dsa_raw(const unsigned char* key, size_t len)
344 {
345  uint8_t T;
346  uint16_t length;
347  uint16_t offset;
348  DSA *dsa;
349  BIGNUM *Q; BIGNUM *P;
350  BIGNUM *G; BIGNUM *Y;
351 
352  if(len == 0)
353  return NULL;
354  T = (uint8_t)key[0];
355  length = (64 + T * 8);
356  offset = 1;
357 
358  if (T > 8) {
359  return NULL;
360  }
361  if(len < (size_t)1 + SHA_DIGEST_LENGTH + 3*length)
362  return NULL;
363 
364  Q = BN_bin2bn(key+offset, SHA_DIGEST_LENGTH, NULL);
365  offset += SHA_DIGEST_LENGTH;
366 
367  P = BN_bin2bn(key+offset, (int)length, NULL);
368  offset += length;
369 
370  G = BN_bin2bn(key+offset, (int)length, NULL);
371  offset += length;
372 
373  Y = BN_bin2bn(key+offset, (int)length, NULL);
374 
375  /* create the key and set its properties */
376  if(!Q || !P || !G || !Y || !(dsa = DSA_new())) {
377  BN_free(Q);
378  BN_free(P);
379  BN_free(G);
380  BN_free(Y);
381  return NULL;
382  }
383 #if OPENSSL_VERSION_NUMBER < 0x10100000 || defined(HAVE_LIBRESSL)
384 #ifndef S_SPLINT_S
385  dsa->p = P;
386  dsa->q = Q;
387  dsa->g = G;
388  dsa->pub_key = Y;
389 #endif /* splint */
390 #else /* OPENSSL_VERSION_NUMBER */
391  if (!DSA_set0_pqg(dsa, P, Q, G)) {
392  /* QPG not yet attached, need to free */
393  BN_free(Q);
394  BN_free(P);
395  BN_free(G);
396 
397  DSA_free(dsa);
398  BN_free(Y);
399  return NULL;
400  }
401  if (!DSA_set0_key(dsa, Y, NULL)) {
402  /* QPG attached, cleaned up by DSA_fre() */
403  DSA_free(dsa);
404  BN_free(Y);
405  return NULL;
406  }
407 #endif /* OPENSSL_VERSION_NUMBER */
408  return dsa;
409 }
410 
411 RSA *
413 {
414  return ldns_key_buf2rsa_raw((const unsigned char*)ldns_buffer_begin(key),
415  ldns_buffer_position(key));
416 }
417 
418 RSA *
419 ldns_key_buf2rsa_raw(const unsigned char* key, size_t len)
420 {
421  uint16_t offset;
422  uint16_t exp;
423  uint16_t int16;
424  RSA *rsa;
425  BIGNUM *modulus;
426  BIGNUM *exponent;
427 
428  if (len == 0)
429  return NULL;
430  if (key[0] == 0) {
431  if(len < 3)
432  return NULL;
433  /* need some smart comment here XXX*/
434  /* the exponent is too large so it's places
435  * futher...???? */
436  memmove(&int16, key+1, 2);
437  exp = ntohs(int16);
438  offset = 3;
439  } else {
440  exp = key[0];
441  offset = 1;
442  }
443 
444  /* key length at least one */
445  if(len < (size_t)offset + exp + 1)
446  return NULL;
447 
448  /* Exponent */
449  exponent = BN_new();
450  if(!exponent) return NULL;
451  (void) BN_bin2bn(key+offset, (int)exp, exponent);
452  offset += exp;
453 
454  /* Modulus */
455  modulus = BN_new();
456  if(!modulus) {
457  BN_free(exponent);
458  return NULL;
459  }
460  /* length of the buffer must match the key length! */
461  (void) BN_bin2bn(key+offset, (int)(len - offset), modulus);
462 
463  rsa = RSA_new();
464  if(!rsa) {
465  BN_free(exponent);
466  BN_free(modulus);
467  return NULL;
468  }
469 #if OPENSSL_VERSION_NUMBER < 0x10100000 || defined(HAVE_LIBRESSL)
470 #ifndef S_SPLINT_S
471  rsa->n = modulus;
472  rsa->e = exponent;
473 #endif /* splint */
474 #else /* OPENSSL_VERSION_NUMBER */
475  if (!RSA_set0_key(rsa, modulus, exponent, NULL)) {
476  BN_free(exponent);
477  BN_free(modulus);
478  RSA_free(rsa);
479  return NULL;
480  }
481 #endif /* OPENSSL_VERSION_NUMBER */
482 
483  return rsa;
484 }
485 
486 int
487 ldns_digest_evp(const unsigned char* data, unsigned int len, unsigned char* dest,
488  const EVP_MD* md)
489 {
490  EVP_MD_CTX* ctx;
491  ctx = EVP_MD_CTX_create();
492  if(!ctx)
493  return false;
494  if(!EVP_DigestInit_ex(ctx, md, NULL) ||
495  !EVP_DigestUpdate(ctx, data, len) ||
496  !EVP_DigestFinal_ex(ctx, dest, NULL)) {
497  EVP_MD_CTX_destroy(ctx);
498  return false;
499  }
500  EVP_MD_CTX_destroy(ctx);
501  return true;
502 }
503 #endif /* HAVE_SSL */
504 
505 ldns_rr *
507 {
508  ldns_rdf *tmp;
509  ldns_rr *ds;
510  uint16_t keytag;
511  uint8_t sha1hash;
512  uint8_t *digest;
513  ldns_buffer *data_buf;
514 #ifdef USE_GOST
515  const EVP_MD* md = NULL;
516 #endif
517 
519  return NULL;
520  }
521 
522  ds = ldns_rr_new();
523  if (!ds) {
524  return NULL;
525  }
528  ldns_rr_owner(key)));
529  ldns_rr_set_ttl(ds, ldns_rr_ttl(key));
531 
532  switch(h) {
533  default:
534  case LDNS_SHA1:
535  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA1_DIGEST_LENGTH);
536  if (!digest) {
537  ldns_rr_free(ds);
538  return NULL;
539  }
540  break;
541  case LDNS_SHA256:
542  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA256_DIGEST_LENGTH);
543  if (!digest) {
544  ldns_rr_free(ds);
545  return NULL;
546  }
547  break;
548  case LDNS_HASH_GOST:
549 #ifdef USE_GOST
551  md = EVP_get_digestbyname("md_gost94");
552  if(!md) {
553  ldns_rr_free(ds);
554  return NULL;
555  }
556  digest = LDNS_XMALLOC(uint8_t, EVP_MD_size(md));
557  if (!digest) {
558  ldns_rr_free(ds);
559  return NULL;
560  }
561  break;
562 #else
563  /* not implemented */
564  ldns_rr_free(ds);
565  return NULL;
566 #endif
567  case LDNS_SHA384:
568 #ifdef USE_ECDSA
569  digest = LDNS_XMALLOC(uint8_t, SHA384_DIGEST_LENGTH);
570  if (!digest) {
571  ldns_rr_free(ds);
572  return NULL;
573  }
574  break;
575 #else
576  /* not implemented */
577  ldns_rr_free(ds);
578  return NULL;
579 #endif
580  }
581 
583  if (!data_buf) {
584  LDNS_FREE(digest);
585  ldns_rr_free(ds);
586  return NULL;
587  }
588 
589  /* keytag */
590  keytag = htons(ldns_calc_keytag((ldns_rr*)key));
592  sizeof(uint16_t),
593  &keytag);
594  ldns_rr_push_rdf(ds, tmp);
595 
596  /* copy the algorithm field */
597  if ((tmp = ldns_rr_rdf(key, 2)) == NULL) {
598  LDNS_FREE(digest);
599  ldns_buffer_free(data_buf);
600  ldns_rr_free(ds);
601  return NULL;
602  } else {
603  ldns_rr_push_rdf(ds, ldns_rdf_clone( tmp ));
604  }
605 
606  /* digest hash type */
607  sha1hash = (uint8_t)h;
609  sizeof(uint8_t),
610  &sha1hash);
611  ldns_rr_push_rdf(ds, tmp);
612 
613  /* digest */
614  /* owner name */
615  tmp = ldns_rdf_clone(ldns_rr_owner(key));
617  if (ldns_rdf2buffer_wire(data_buf, tmp) != LDNS_STATUS_OK) {
618  LDNS_FREE(digest);
619  ldns_buffer_free(data_buf);
620  ldns_rr_free(ds);
621  ldns_rdf_deep_free(tmp);
622  return NULL;
623  }
624  ldns_rdf_deep_free(tmp);
625 
626  /* all the rdata's */
627  if (ldns_rr_rdata2buffer_wire(data_buf,
628  (ldns_rr*)key) != LDNS_STATUS_OK) {
629  LDNS_FREE(digest);
630  ldns_buffer_free(data_buf);
631  ldns_rr_free(ds);
632  return NULL;
633  }
634  switch(h) {
635  case LDNS_SHA1:
636  (void) ldns_sha1((unsigned char *) ldns_buffer_begin(data_buf),
637  (unsigned int) ldns_buffer_position(data_buf),
638  (unsigned char *) digest);
639 
642  digest);
643  ldns_rr_push_rdf(ds, tmp);
644 
645  break;
646  case LDNS_SHA256:
647  (void) ldns_sha256((unsigned char *) ldns_buffer_begin(data_buf),
648  (unsigned int) ldns_buffer_position(data_buf),
649  (unsigned char *) digest);
652  digest);
653  ldns_rr_push_rdf(ds, tmp);
654  break;
655  case LDNS_HASH_GOST:
656 #ifdef USE_GOST
657  if(!ldns_digest_evp((unsigned char *) ldns_buffer_begin(data_buf),
658  (unsigned int) ldns_buffer_position(data_buf),
659  (unsigned char *) digest, md)) {
660  LDNS_FREE(digest);
661  ldns_buffer_free(data_buf);
662  ldns_rr_free(ds);
663  return NULL;
664  }
666  (size_t)EVP_MD_size(md),
667  digest);
668  ldns_rr_push_rdf(ds, tmp);
669 #endif
670  break;
671  case LDNS_SHA384:
672 #ifdef USE_ECDSA
673  (void) SHA384((unsigned char *) ldns_buffer_begin(data_buf),
674  (unsigned int) ldns_buffer_position(data_buf),
675  (unsigned char *) digest);
677  SHA384_DIGEST_LENGTH,
678  digest);
679  ldns_rr_push_rdf(ds, tmp);
680 #endif
681  break;
682  }
683 
684  LDNS_FREE(digest);
685  ldns_buffer_free(data_buf);
686  return ds;
687 }
688 
689 /* From RFC3845:
690  *
691  * 2.1.2. The List of Type Bit Map(s) Field
692  *
693  * The RR type space is split into 256 window blocks, each representing
694  * the low-order 8 bits of the 16-bit RR type space. Each block that
695  * has at least one active RR type is encoded using a single octet
696  * window number (from 0 to 255), a single octet bitmap length (from 1
697  * to 32) indicating the number of octets used for the window block's
698  * bitmap, and up to 32 octets (256 bits) of bitmap.
699  *
700  * Window blocks are present in the NSEC RR RDATA in increasing
701  * numerical order.
702  *
703  * "|" denotes concatenation
704  *
705  * Type Bit Map(s) Field = ( Window Block # | Bitmap Length | Bitmap ) +
706  *
707  * <cut>
708  *
709  * Blocks with no types present MUST NOT be included. Trailing zero
710  * octets in the bitmap MUST be omitted. The length of each block's
711  * bitmap is determined by the type code with the largest numerical
712  * value within that block, among the set of RR types present at the
713  * NSEC RR's owner name. Trailing zero octets not specified MUST be
714  * interpreted as zero octets.
715  */
716 ldns_rdf *
718  size_t size,
719  ldns_rr_type nsec_type)
720 {
721  uint8_t window; /* most significant octet of type */
722  uint8_t subtype; /* least significant octet of type */
723  int windows[256]; /* Max subtype per window */
724  uint8_t windowpresent[256]; /* bool if window appears in bitmap */
725  ldns_rr_type* d; /* used to traverse rr_type_list*/
726  size_t i; /* used to traverse windows array */
727 
728  size_t sz; /* size needed for type bitmap rdf */
729  uint8_t* data = NULL; /* rdf data */
730  uint8_t* dptr; /* used to itraverse rdf data */
731  ldns_rdf* rdf; /* bitmap rdf to return */
732 
733  if (nsec_type != LDNS_RR_TYPE_NSEC &&
734  nsec_type != LDNS_RR_TYPE_NSEC3) {
735  return NULL;
736  }
737  memset(windows, 0, sizeof(int)*256);
738  memset(windowpresent, 0, 256);
739 
740  /* Which other windows need to be in the bitmap rdf?
741  */
742  for (d = rr_type_list; d < rr_type_list + size; d++) {
743  window = *d >> 8;
744  subtype = *d & 0xff;
745  windowpresent[window] = 1;
746  if (windows[window] < (int)subtype) {
747  windows[window] = (int)subtype;
748  }
749  }
750 
751  /* How much space do we need in the rdf for those windows?
752  */
753  sz = 0;
754  for (i = 0; i < 256; i++) {
755  if (windowpresent[i]) {
756  sz += windows[i] / 8 + 3;
757  }
758  }
759  if (sz > 0) {
760  /* Format rdf data according RFC3845 Section 2.1.2 (see above)
761  */
762  dptr = data = LDNS_CALLOC(uint8_t, sz);
763  if (!data) {
764  return NULL;
765  }
766  for (i = 0; i < 256; i++) {
767  if (windowpresent[i]) {
768  *dptr++ = (uint8_t)i;
769  *dptr++ = (uint8_t)(windows[i] / 8 + 1);
770 
771  /* Now let windows[i] index the bitmap
772  * within data
773  */
774  windows[i] = (int)(dptr - data);
775 
776  dptr += dptr[-1];
777  }
778  }
779  }
780 
781  /* Set the bits?
782  */
783  for (d = rr_type_list; d < rr_type_list + size; d++) {
784  subtype = *d & 0xff;
785  data[windows[*d >> 8] + subtype/8] |= (0x80 >> (subtype % 8));
786  }
787 
788  /* Allocate and return rdf structure for the data
789  */
790  rdf = ldns_rdf_new(LDNS_RDF_TYPE_BITMAP, sz, data);
791  if (!rdf) {
792  LDNS_FREE(data);
793  return NULL;
794  }
795  return rdf;
796 }
797 
798 int
800  ldns_rr_type type)
801 {
802  const ldns_dnssec_rrsets *cur_rrset = rrsets;
803  while (cur_rrset) {
804  if (cur_rrset->type == type) {
805  return 1;
806  }
807  cur_rrset = cur_rrset->next;
808  }
809  return 0;
810 }
811 
812 ldns_rr *
814  const ldns_dnssec_name *to,
815  ldns_rr_type nsec_type)
816 {
817  ldns_rr *nsec_rr;
818  ldns_rr_type types[65536];
819  size_t type_count = 0;
820  ldns_dnssec_rrsets *cur_rrsets;
821  int on_delegation_point;
822 
823  if (!from || !to || (nsec_type != LDNS_RR_TYPE_NSEC)) {
824  return NULL;
825  }
826 
827  nsec_rr = ldns_rr_new();
828  ldns_rr_set_type(nsec_rr, nsec_type);
831 
832  on_delegation_point = ldns_dnssec_rrsets_contains_type(
833  from->rrsets, LDNS_RR_TYPE_NS)
835  from->rrsets, LDNS_RR_TYPE_SOA);
836 
837  cur_rrsets = from->rrsets;
838  while (cur_rrsets) {
839  /* Do not include non-authoritative rrsets on the delegation point
840  * in the type bitmap */
841  if ((on_delegation_point && (
842  cur_rrsets->type == LDNS_RR_TYPE_NS
843  || cur_rrsets->type == LDNS_RR_TYPE_DS))
844  || (!on_delegation_point &&
845  cur_rrsets->type != LDNS_RR_TYPE_RRSIG
846  && cur_rrsets->type != LDNS_RR_TYPE_NSEC)) {
847 
848  types[type_count] = cur_rrsets->type;
849  type_count++;
850  }
851  cur_rrsets = cur_rrsets->next;
852 
853  }
854  types[type_count] = LDNS_RR_TYPE_RRSIG;
855  type_count++;
856  types[type_count] = LDNS_RR_TYPE_NSEC;
857  type_count++;
858 
860  type_count,
861  nsec_type));
862 
863  return nsec_rr;
864 }
865 
866 ldns_rr *
868  const ldns_dnssec_name *to,
869  const ldns_rdf *zone_name,
870  uint8_t algorithm,
871  uint8_t flags,
872  uint16_t iterations,
873  uint8_t salt_length,
874  const uint8_t *salt)
875 {
876  ldns_rr *nsec_rr;
877  ldns_rr_type types[65536];
878  size_t type_count = 0;
879  ldns_dnssec_rrsets *cur_rrsets;
880  ldns_status status;
881  int on_delegation_point;
882 
883  if (!from) {
884  return NULL;
885  }
886 
888  ldns_rr_set_owner(nsec_rr,
890  algorithm,
891  iterations,
892  salt_length,
893  salt));
894  status = ldns_dname_cat(ldns_rr_owner(nsec_rr), zone_name);
895  if(status != LDNS_STATUS_OK) {
896  ldns_rr_free(nsec_rr);
897  return NULL;
898  }
900  algorithm,
901  flags,
902  iterations,
903  salt_length,
904  salt);
905 
906  on_delegation_point = ldns_dnssec_rrsets_contains_type(
907  from->rrsets, LDNS_RR_TYPE_NS)
909  from->rrsets, LDNS_RR_TYPE_SOA);
910  cur_rrsets = from->rrsets;
911  while (cur_rrsets) {
912  /* Do not include non-authoritative rrsets on the delegation point
913  * in the type bitmap. Potentionally not skipping insecure
914  * delegation should have been done earlier, in function
915  * ldns_dnssec_zone_create_nsec3s, or even earlier in:
916  * ldns_dnssec_zone_sign_nsec3_flg .
917  */
918  if ((on_delegation_point && (
919  cur_rrsets->type == LDNS_RR_TYPE_NS
920  || cur_rrsets->type == LDNS_RR_TYPE_DS))
921  || (!on_delegation_point &&
922  cur_rrsets->type != LDNS_RR_TYPE_RRSIG)) {
923 
924  types[type_count] = cur_rrsets->type;
925  type_count++;
926  }
927  cur_rrsets = cur_rrsets->next;
928  }
929  /* always add rrsig type if this is not an unsigned
930  * delegation
931  */
932  if (type_count > 0 &&
933  !(type_count == 1 && types[0] == LDNS_RR_TYPE_NS)) {
934  types[type_count] = LDNS_RR_TYPE_RRSIG;
935  type_count++;
936  }
937 
938  /* leave next rdata empty if they weren't precomputed yet */
939  if (to && to->hashed_name) {
940  (void) ldns_rr_set_rdf(nsec_rr,
942  4);
943  } else {
944  (void) ldns_rr_set_rdf(nsec_rr, NULL, 4);
945  }
946 
947  ldns_rr_push_rdf(nsec_rr,
949  type_count,
951 
952  return nsec_rr;
953 }
954 
955 ldns_rr *
956 ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
957 {
958  /* we do not do any check here - garbage in, garbage out */
959 
960  /* the the start and end names - get the type from the
961  * before rrlist */
962 
963  /* inefficient, just give it a name, a next name, and a list of rrs */
964  /* we make 1 big uberbitmap first, then windows */
965  /* todo: make something more efficient :) */
966  uint16_t i;
967  ldns_rr *i_rr;
968  uint16_t i_type;
969 
970  ldns_rr *nsec = NULL;
971  ldns_rr_type i_type_list[65536];
972  size_t type_count = 0;
973 
974  nsec = ldns_rr_new();
976  ldns_rr_set_owner(nsec, ldns_rdf_clone(cur_owner));
977  ldns_rr_push_rdf(nsec, ldns_rdf_clone(next_owner));
978 
979  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
980  i_rr = ldns_rr_list_rr(rrs, i);
981  if (ldns_rdf_compare(cur_owner,
982  ldns_rr_owner(i_rr)) == 0) {
983  i_type = ldns_rr_get_type(i_rr);
984  if (i_type != LDNS_RR_TYPE_RRSIG && i_type != LDNS_RR_TYPE_NSEC) {
985  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
986  i_type_list[type_count] = i_type;
987  type_count++;
988  }
989  }
990  }
991  }
992 
993  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
994  type_count++;
995  i_type_list[type_count] = LDNS_RR_TYPE_NSEC;
996  type_count++;
997 
998  ldns_rr_push_rdf(nsec,
999  ldns_dnssec_create_nsec_bitmap(i_type_list,
1000  type_count, LDNS_RR_TYPE_NSEC));
1001 
1002  return nsec;
1003 }
1004 
1005 ldns_rdf *
1007  uint8_t algorithm,
1008  uint16_t iterations,
1009  uint8_t salt_length,
1010  const uint8_t *salt)
1011 {
1012  size_t hashed_owner_str_len;
1013  ldns_rdf *cann;
1014  ldns_rdf *hashed_owner;
1015  unsigned char *hashed_owner_str;
1016  char *hashed_owner_b32;
1017  size_t hashed_owner_b32_len;
1018  uint32_t cur_it;
1019  /* define to contain the largest possible hash, which is
1020  * sha1 at the moment */
1021  unsigned char hash[LDNS_SHA1_DIGEST_LENGTH];
1022  ldns_status status;
1023 
1024  /* TODO: mnemonic list for hash algs SHA-1, default to 1 now (sha1) */
1025  if (algorithm != LDNS_SHA1) {
1026  return NULL;
1027  }
1028 
1029  /* prepare the owner name according to the draft section bla */
1030  cann = ldns_rdf_clone(name);
1031  if(!cann) {
1032 #ifdef STDERR_MSGS
1033  fprintf(stderr, "Memory error\n");
1034 #endif
1035  return NULL;
1036  }
1037  ldns_dname2canonical(cann);
1038 
1039  hashed_owner_str_len = salt_length + ldns_rdf_size(cann);
1040  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
1041  if(!hashed_owner_str) {
1042  ldns_rdf_deep_free(cann);
1043  return NULL;
1044  }
1045  memcpy(hashed_owner_str, ldns_rdf_data(cann), ldns_rdf_size(cann));
1046  memcpy(hashed_owner_str + ldns_rdf_size(cann), salt, salt_length);
1047  ldns_rdf_deep_free(cann);
1048 
1049  for (cur_it = iterations + 1; cur_it > 0; cur_it--) {
1050  (void) ldns_sha1((unsigned char *) hashed_owner_str,
1051  (unsigned int) hashed_owner_str_len, hash);
1052 
1053  LDNS_FREE(hashed_owner_str);
1054  hashed_owner_str_len = salt_length + LDNS_SHA1_DIGEST_LENGTH;
1055  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
1056  if (!hashed_owner_str) {
1057  return NULL;
1058  }
1059  memcpy(hashed_owner_str, hash, LDNS_SHA1_DIGEST_LENGTH);
1060  memcpy(hashed_owner_str + LDNS_SHA1_DIGEST_LENGTH, salt, salt_length);
1061  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH + salt_length;
1062  }
1063 
1064  LDNS_FREE(hashed_owner_str);
1065  hashed_owner_str = hash;
1066  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH;
1067 
1068  hashed_owner_b32 = LDNS_XMALLOC(char,
1069  ldns_b32_ntop_calculate_size(hashed_owner_str_len) + 1);
1070  if(!hashed_owner_b32) {
1071  return NULL;
1072  }
1073  hashed_owner_b32_len = (size_t) ldns_b32_ntop_extended_hex(
1074  (uint8_t *) hashed_owner_str,
1075  hashed_owner_str_len,
1076  hashed_owner_b32,
1077  ldns_b32_ntop_calculate_size(hashed_owner_str_len)+1);
1078  if (hashed_owner_b32_len < 1) {
1079 #ifdef STDERR_MSGS
1080  fprintf(stderr, "Error in base32 extended hex encoding ");
1081  fprintf(stderr, "of hashed owner name (name: ");
1082  ldns_rdf_print(stderr, name);
1083  fprintf(stderr, ", return code: %u)\n",
1084  (unsigned int) hashed_owner_b32_len);
1085 #endif
1086  LDNS_FREE(hashed_owner_b32);
1087  return NULL;
1088  }
1089  hashed_owner_b32[hashed_owner_b32_len] = '\0';
1090 
1091  status = ldns_str2rdf_dname(&hashed_owner, hashed_owner_b32);
1092  if (status != LDNS_STATUS_OK) {
1093 #ifdef STDERR_MSGS
1094  fprintf(stderr, "Error creating rdf from %s\n", hashed_owner_b32);
1095 #endif
1096  LDNS_FREE(hashed_owner_b32);
1097  return NULL;
1098  }
1099 
1100  LDNS_FREE(hashed_owner_b32);
1101  return hashed_owner;
1102 }
1103 
1104 void
1106  uint8_t algorithm,
1107  uint8_t flags,
1108  uint16_t iterations,
1109  uint8_t salt_length,
1110  const uint8_t *salt)
1111 {
1112  ldns_rdf *salt_rdf = NULL;
1113  uint8_t *salt_data = NULL;
1114  ldns_rdf *old;
1115 
1116  old = ldns_rr_set_rdf(rr,
1118  1, (void*)&algorithm),
1119  0);
1120  if (old) ldns_rdf_deep_free(old);
1121 
1122  old = ldns_rr_set_rdf(rr,
1124  1, (void*)&flags),
1125  1);
1126  if (old) ldns_rdf_deep_free(old);
1127 
1128  old = ldns_rr_set_rdf(rr,
1130  iterations),
1131  2);
1132  if (old) ldns_rdf_deep_free(old);
1133 
1134  salt_data = LDNS_XMALLOC(uint8_t, salt_length + 1);
1135  if(!salt_data) {
1136  /* no way to return error */
1137  return;
1138  }
1139  salt_data[0] = salt_length;
1140  memcpy(salt_data + 1, salt, salt_length);
1142  salt_length + 1,
1143  salt_data);
1144  if(!salt_rdf) {
1145  LDNS_FREE(salt_data);
1146  /* no way to return error */
1147  return;
1148  }
1149 
1150  old = ldns_rr_set_rdf(rr, salt_rdf, 3);
1151  if (old) ldns_rdf_deep_free(old);
1152  LDNS_FREE(salt_data);
1153 }
1154 
1155 static int
1156 rr_list_delegation_only(const ldns_rdf *origin, const ldns_rr_list *rr_list)
1157 {
1158  size_t i;
1159  ldns_rr *cur_rr;
1160  if (!origin || !rr_list) return 0;
1161  for (i = 0; i < ldns_rr_list_rr_count(rr_list); i++) {
1162  cur_rr = ldns_rr_list_rr(rr_list, i);
1163  if (ldns_dname_compare(ldns_rr_owner(cur_rr), origin) == 0) {
1164  return 0;
1165  }
1166  if (ldns_rr_get_type(cur_rr) != LDNS_RR_TYPE_NS) {
1167  return 0;
1168  }
1169  }
1170  return 1;
1171 }
1172 
1173 /* this will NOT return the NSEC3 completed, you will have to run the
1174  finalize function on the rrlist later! */
1175 ldns_rr *
1176 ldns_create_nsec3(const ldns_rdf *cur_owner,
1177  const ldns_rdf *cur_zone,
1178  const ldns_rr_list *rrs,
1179  uint8_t algorithm,
1180  uint8_t flags,
1181  uint16_t iterations,
1182  uint8_t salt_length,
1183  const uint8_t *salt,
1184  bool emptynonterminal)
1185 {
1186  size_t i;
1187  ldns_rr *i_rr;
1188  uint16_t i_type;
1189 
1190  ldns_rr *nsec = NULL;
1191  ldns_rdf *hashed_owner = NULL;
1192 
1193  ldns_status status;
1194 
1195  ldns_rr_type i_type_list[1024];
1196  size_t type_count = 0;
1197 
1198  hashed_owner = ldns_nsec3_hash_name(cur_owner,
1199  algorithm,
1200  iterations,
1201  salt_length,
1202  salt);
1203  status = ldns_dname_cat(hashed_owner, cur_zone);
1204  if(status != LDNS_STATUS_OK) {
1205  ldns_rdf_deep_free(hashed_owner);
1206  return NULL;
1207  }
1209  if(!nsec) {
1210  ldns_rdf_deep_free(hashed_owner);
1211  return NULL;
1212  }
1214  ldns_rr_set_owner(nsec, hashed_owner);
1215 
1217  algorithm,
1218  flags,
1219  iterations,
1220  salt_length,
1221  salt);
1222  (void) ldns_rr_set_rdf(nsec, NULL, 4);
1223 
1224 
1225  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
1226  i_rr = ldns_rr_list_rr(rrs, i);
1227  if (ldns_rdf_compare(cur_owner,
1228  ldns_rr_owner(i_rr)) == 0) {
1229  i_type = ldns_rr_get_type(i_rr);
1230  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
1231  i_type_list[type_count] = i_type;
1232  type_count++;
1233  }
1234  }
1235  }
1236 
1237  /* add RRSIG anyway, but only if this is not an ENT or
1238  * an unsigned delegation */
1239  if (!emptynonterminal && !rr_list_delegation_only(cur_zone, rrs)) {
1240  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
1241  type_count++;
1242  }
1243 
1244  /* and SOA if owner == zone */
1245  if (ldns_dname_compare(cur_zone, cur_owner) == 0) {
1246  i_type_list[type_count] = LDNS_RR_TYPE_SOA;
1247  type_count++;
1248  }
1249 
1250  ldns_rr_push_rdf(nsec,
1251  ldns_dnssec_create_nsec_bitmap(i_type_list,
1252  type_count, LDNS_RR_TYPE_NSEC3));
1253 
1254  return nsec;
1255 }
1256 
1257 uint8_t
1259 {
1260  if (nsec3_rr &&
1261  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1263  && (ldns_rr_rdf(nsec3_rr, 0) != NULL)
1264  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 0)) > 0) {
1265  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 0));
1266  }
1267  return 0;
1268 }
1269 
1270 uint8_t
1271 ldns_nsec3_flags(const ldns_rr *nsec3_rr)
1272 {
1273  if (nsec3_rr &&
1274  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1276  && (ldns_rr_rdf(nsec3_rr, 1) != NULL)
1277  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 1)) > 0) {
1278  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 1));
1279  }
1280  return 0;
1281 }
1282 
1283 bool
1284 ldns_nsec3_optout(const ldns_rr *nsec3_rr)
1285 {
1286  return (ldns_nsec3_flags(nsec3_rr) & LDNS_NSEC3_VARS_OPTOUT_MASK);
1287 }
1288 
1289 uint16_t
1291 {
1292  if (nsec3_rr &&
1293  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1295  && (ldns_rr_rdf(nsec3_rr, 2) != NULL)
1296  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 2)) > 0) {
1297  return ldns_rdf2native_int16(ldns_rr_rdf(nsec3_rr, 2));
1298  }
1299  return 0;
1300 
1301 }
1302 
1303 ldns_rdf *
1304 ldns_nsec3_salt(const ldns_rr *nsec3_rr)
1305 {
1306  if (nsec3_rr &&
1307  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1309  ) {
1310  return ldns_rr_rdf(nsec3_rr, 3);
1311  }
1312  return NULL;
1313 }
1314 
1315 uint8_t
1317 {
1318  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1319  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1320  return (uint8_t) ldns_rdf_data(salt_rdf)[0];
1321  }
1322  return 0;
1323 }
1324 
1325 /* allocs data, free with LDNS_FREE() */
1326 uint8_t *
1328 {
1329  uint8_t salt_length;
1330  uint8_t *salt;
1331 
1332  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1333  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1334  salt_length = ldns_rdf_data(salt_rdf)[0];
1335  if((size_t)salt_length+1 > ldns_rdf_size(salt_rdf))
1336  return NULL;
1337  salt = LDNS_XMALLOC(uint8_t, salt_length);
1338  if(!salt) return NULL;
1339  memcpy(salt, &ldns_rdf_data(salt_rdf)[1], salt_length);
1340  return salt;
1341  }
1342  return NULL;
1343 }
1344 
1345 ldns_rdf *
1347 {
1348  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1349  return NULL;
1350  } else {
1351  return ldns_rr_rdf(nsec3_rr, 4);
1352  }
1353 }
1354 
1355 ldns_rdf *
1356 ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
1357 {
1358  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1359  return NULL;
1360  } else {
1361  return ldns_rr_rdf(nsec3_rr, 5);
1362  }
1363 }
1364 
1365 ldns_rdf *
1367 {
1368  uint8_t algorithm;
1369  uint16_t iterations;
1370  uint8_t salt_length;
1371  uint8_t *salt = 0;
1372 
1373  ldns_rdf *hashed_owner;
1374 
1375  algorithm = ldns_nsec3_algorithm(nsec);
1376  salt_length = ldns_nsec3_salt_length(nsec);
1377  salt = ldns_nsec3_salt_data(nsec);
1378  iterations = ldns_nsec3_iterations(nsec);
1379 
1380  hashed_owner = ldns_nsec3_hash_name(name,
1381  algorithm,
1382  iterations,
1383  salt_length,
1384  salt);
1385 
1386  LDNS_FREE(salt);
1387  return hashed_owner;
1388 }
1389 
1390 bool
1392 {
1393  uint8_t* dptr;
1394  uint8_t* dend;
1395 
1396  /* From RFC3845 Section 2.1.2:
1397  *
1398  * "The RR type space is split into 256 window blocks, each re-
1399  * presenting the low-order 8 bits of the 16-bit RR type space."
1400  */
1401  uint8_t window = type >> 8;
1402  uint8_t subtype = type & 0xff;
1403 
1404  if (! bitmap) {
1405  return false;
1406  }
1407  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1408 
1409  dptr = ldns_rdf_data(bitmap);
1410  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1411 
1412  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1413  * dptr[0] dptr[1] dptr[2:]
1414  */
1415  while (dptr < dend && dptr[0] <= window) {
1416 
1417  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1418  dptr + dptr[1] + 2 <= dend) {
1419 
1420  return dptr[2 + subtype / 8] & (0x80 >> (subtype % 8));
1421  }
1422  dptr += dptr[1] + 2; /* next window */
1423  }
1424  return false;
1425 }
1426 
1429 {
1430  uint8_t* dptr;
1431  uint8_t* dend;
1432 
1433  /* From RFC3845 Section 2.1.2:
1434  *
1435  * "The RR type space is split into 256 window blocks, each re-
1436  * presenting the low-order 8 bits of the 16-bit RR type space."
1437  */
1438  uint8_t window = type >> 8;
1439  uint8_t subtype = type & 0xff;
1440 
1441  if (! bitmap) {
1442  return false;
1443  }
1444  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1445 
1446  dptr = ldns_rdf_data(bitmap);
1447  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1448 
1449  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1450  * dptr[0] dptr[1] dptr[2:]
1451  */
1452  while (dptr < dend && dptr[0] <= window) {
1453 
1454  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1455  dptr + dptr[1] + 2 <= dend) {
1456 
1457  dptr[2 + subtype / 8] |= (0x80 >> (subtype % 8));
1458  return LDNS_STATUS_OK;
1459  }
1460  dptr += dptr[1] + 2; /* next window */
1461  }
1463 }
1464 
1467 {
1468  uint8_t* dptr;
1469  uint8_t* dend;
1470 
1471  /* From RFC3845 Section 2.1.2:
1472  *
1473  * "The RR type space is split into 256 window blocks, each re-
1474  * presenting the low-order 8 bits of the 16-bit RR type space."
1475  */
1476  uint8_t window = type >> 8;
1477  uint8_t subtype = type & 0xff;
1478 
1479  if (! bitmap) {
1480  return false;
1481  }
1482 
1483  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1484 
1485  dptr = ldns_rdf_data(bitmap);
1486  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1487 
1488  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1489  * dptr[0] dptr[1] dptr[2:]
1490  */
1491  while (dptr < dend && dptr[0] <= window) {
1492 
1493  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1494  dptr + dptr[1] + 2 <= dend) {
1495 
1496  dptr[2 + subtype / 8] &= ~(0x80 >> (subtype % 8));
1497  return LDNS_STATUS_OK;
1498  }
1499  dptr += dptr[1] + 2; /* next window */
1500  }
1502 }
1503 
1504 
1505 bool
1506 ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
1507 {
1508  ldns_rdf *nsec_owner = ldns_rr_owner(nsec);
1509  ldns_rdf *hash_next;
1510  char *next_hash_str;
1511  ldns_rdf *nsec_next = NULL;
1512  ldns_status status;
1513  ldns_rdf *chopped_dname;
1514  bool result;
1515 
1516  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
1517  if (ldns_rr_rdf(nsec, 0) != NULL) {
1518  nsec_next = ldns_rdf_clone(ldns_rr_rdf(nsec, 0));
1519  } else {
1520  return false;
1521  }
1522  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
1523  hash_next = ldns_nsec3_next_owner(nsec);
1524  next_hash_str = ldns_rdf2str(hash_next);
1525  nsec_next = ldns_dname_new_frm_str(next_hash_str);
1526  LDNS_FREE(next_hash_str);
1527  chopped_dname = ldns_dname_left_chop(nsec_owner);
1528  status = ldns_dname_cat(nsec_next, chopped_dname);
1529  ldns_rdf_deep_free(chopped_dname);
1530  if (status != LDNS_STATUS_OK) {
1531  printf("error catting: %s\n", ldns_get_errorstr_by_id(status));
1532  }
1533  } else {
1534  ldns_rdf_deep_free(nsec_next);
1535  return false;
1536  }
1537 
1538  /* in the case of the last nsec */
1539  if(ldns_dname_compare(nsec_owner, nsec_next) > 0) {
1540  result = (ldns_dname_compare(nsec_owner, name) <= 0 ||
1541  ldns_dname_compare(name, nsec_next) < 0);
1542  } else if(ldns_dname_compare(nsec_owner, nsec_next) < 0) {
1543  result = (ldns_dname_compare(nsec_owner, name) <= 0 &&
1544  ldns_dname_compare(name, nsec_next) < 0);
1545  } else {
1546  result = true;
1547  }
1548 
1549  ldns_rdf_deep_free(nsec_next);
1550  return result;
1551 }
1552 
1553 #ifdef HAVE_SSL
1554 /* sig may be null - if so look in the packet */
1555 
1558  const ldns_rr_list *k, const ldns_rr_list *s,
1559  time_t check_time, ldns_rr_list *good_keys)
1560 {
1561  ldns_rr_list *rrset;
1562  ldns_rr_list *sigs;
1563  ldns_rr_list *sigs_covered;
1564  ldns_rdf *rdf_t;
1565  ldns_rr_type t_netorder;
1566  ldns_status status;
1567 
1568  if (!k) {
1569  return LDNS_STATUS_ERR;
1570  /* return LDNS_STATUS_CRYPTO_NO_DNSKEY; */
1571  }
1572 
1573  if (t == LDNS_RR_TYPE_RRSIG) {
1574  /* we don't have RRSIG(RRSIG) (yet? ;-) ) */
1575  return LDNS_STATUS_ERR;
1576  }
1577 
1578  if (s) {
1579  /* if s is not NULL, the sigs are given to use */
1580  sigs = (ldns_rr_list *)s;
1581  } else {
1582  /* otherwise get them from the packet */
1586  if (!sigs) {
1587  /* no sigs */
1588  return LDNS_STATUS_ERR;
1589  /* return LDNS_STATUS_CRYPTO_NO_RRSIG; */
1590  }
1591  }
1592 
1593  /* rrsig are subtyped, so now we need to find the correct
1594  * sigs for the type t
1595  */
1596  t_netorder = htons(t); /* rdf are in network order! */
1597  /* a type identifier is a 16-bit number, so the size is 2 bytes */
1598  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, 2, &t_netorder);
1599 
1600  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
1601  ldns_rdf_free(rdf_t);
1602  if (! sigs_covered) {
1603  if (! s) {
1604  ldns_rr_list_deep_free(sigs);
1605  }
1606  return LDNS_STATUS_ERR;
1607  }
1608  ldns_rr_list_deep_free(sigs_covered);
1609 
1610  rrset = ldns_pkt_rr_list_by_name_and_type(p, o, t,
1612  if (!rrset) {
1613  if (! s) {
1614  ldns_rr_list_deep_free(sigs);
1615  }
1616  return LDNS_STATUS_ERR;
1617  }
1618  status = ldns_verify_time(rrset, sigs, k, check_time, good_keys);
1619  ldns_rr_list_deep_free(rrset);
1620  return status;
1621 }
1622 
1625  const ldns_rr_list *k, const ldns_rr_list *s, ldns_rr_list *good_keys)
1626 {
1627  return ldns_pkt_verify_time(p, t, o, k, s, ldns_time(NULL), good_keys);
1628 }
1629 #endif /* HAVE_SSL */
1630 
1633 {
1634  size_t i;
1635  char *next_nsec_owner_str;
1636  ldns_rdf *next_nsec_owner_label;
1637  ldns_rdf *next_nsec_rdf;
1638  ldns_status status = LDNS_STATUS_OK;
1639 
1640  for (i = 0; i < ldns_rr_list_rr_count(nsec3_rrs); i++) {
1641  if (i == ldns_rr_list_rr_count(nsec3_rrs) - 1) {
1642  next_nsec_owner_label =
1644  0)), 0);
1645  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1646  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1647  == '.') {
1648  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1649  = '\0';
1650  }
1651  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1652  next_nsec_owner_str);
1653  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1654  next_nsec_rdf, 4)) {
1655  /* todo: error */
1656  }
1657 
1658  ldns_rdf_deep_free(next_nsec_owner_label);
1659  LDNS_FREE(next_nsec_owner_str);
1660  } else {
1661  next_nsec_owner_label =
1663  i + 1)),
1664  0);
1665  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1666  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1667  == '.') {
1668  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1669  = '\0';
1670  }
1671  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1672  next_nsec_owner_str);
1673  ldns_rdf_deep_free(next_nsec_owner_label);
1674  LDNS_FREE(next_nsec_owner_str);
1675  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1676  next_nsec_rdf, 4)) {
1677  /* todo: error */
1678  }
1679  }
1680  }
1681  return status;
1682 }
1683 
1684 int
1685 qsort_rr_compare_nsec3(const void *a, const void *b)
1686 {
1687  const ldns_rr *rr1 = * (const ldns_rr **) a;
1688  const ldns_rr *rr2 = * (const ldns_rr **) b;
1689  if (rr1 == NULL && rr2 == NULL) {
1690  return 0;
1691  }
1692  if (rr1 == NULL) {
1693  return -1;
1694  }
1695  if (rr2 == NULL) {
1696  return 1;
1697  }
1698  return ldns_rdf_compare(ldns_rr_owner(rr1), ldns_rr_owner(rr2));
1699 }
1700 
1701 void
1703 {
1704  qsort(unsorted->_rrs,
1705  ldns_rr_list_rr_count(unsorted),
1706  sizeof(ldns_rr *),
1708 }
1709 
1710 int
1712  , ATTR_UNUSED(void *n)
1713  )
1714 {
1716 }
1717 
1718 int
1720  , ATTR_UNUSED(void *n)
1721  )
1722 {
1724 }
1725 
1726 int
1728  , ATTR_UNUSED(void *n)
1729  )
1730 {
1732 }
1733 
1734 int
1736  , ATTR_UNUSED(void *n)
1737  )
1738 {
1740 }
1741 
1742 #ifdef HAVE_SSL
1743 ldns_rdf *
1745  const long sig_len)
1746 {
1747 #ifdef USE_DSA
1748  ldns_rdf *sigdata_rdf;
1749  DSA_SIG *dsasig;
1750  const BIGNUM *R, *S;
1751  unsigned char *dsasig_data = (unsigned char*)ldns_buffer_begin(sig);
1752  size_t byte_offset;
1753 
1754  dsasig = d2i_DSA_SIG(NULL,
1755  (const unsigned char **)&dsasig_data,
1756  sig_len);
1757  if (!dsasig) {
1758  DSA_SIG_free(dsasig);
1759  return NULL;
1760  }
1761 
1762  dsasig_data = LDNS_XMALLOC(unsigned char, 41);
1763  if(!dsasig_data) {
1764  DSA_SIG_free(dsasig);
1765  return NULL;
1766  }
1767  dsasig_data[0] = 0;
1768 # ifdef HAVE_DSA_SIG_GET0
1769  DSA_SIG_get0(dsasig, &R, &S);
1770 # else
1771  R = dsasig->r;
1772  S = dsasig->s;
1773 # endif
1774  byte_offset = (size_t) (20 - BN_num_bytes(R));
1775  if (byte_offset > 20) {
1776  DSA_SIG_free(dsasig);
1777  LDNS_FREE(dsasig_data);
1778  return NULL;
1779  }
1780  memset(&dsasig_data[1], 0, byte_offset);
1781  BN_bn2bin(R, &dsasig_data[1 + byte_offset]);
1782  byte_offset = (size_t) (20 - BN_num_bytes(S));
1783  if (byte_offset > 20) {
1784  DSA_SIG_free(dsasig);
1785  LDNS_FREE(dsasig_data);
1786  return NULL;
1787  }
1788  memset(&dsasig_data[21], 0, byte_offset);
1789  BN_bn2bin(S, &dsasig_data[21 + byte_offset]);
1790 
1791  sigdata_rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, 41, dsasig_data);
1792  if(!sigdata_rdf) {
1793  LDNS_FREE(dsasig_data);
1794  }
1795  DSA_SIG_free(dsasig);
1796 
1797  return sigdata_rdf;
1798 #else
1799  (void)sig; (void)sig_len;
1800  return NULL;
1801 #endif
1802 }
1803 
1806  const ldns_rdf *sig_rdf)
1807 {
1808 #ifdef USE_DSA
1809  /* the EVP api wants the DER encoding of the signature... */
1810  BIGNUM *R, *S;
1811  DSA_SIG *dsasig;
1812  unsigned char *raw_sig = NULL;
1813  int raw_sig_len;
1814 
1815  if(ldns_rdf_size(sig_rdf) < 1 + 2*SHA_DIGEST_LENGTH)
1817  /* extract the R and S field from the sig buffer */
1818  R = BN_new();
1819  if(!R) return LDNS_STATUS_MEM_ERR;
1820  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 1,
1821  SHA_DIGEST_LENGTH, R);
1822  S = BN_new();
1823  if(!S) {
1824  BN_free(R);
1825  return LDNS_STATUS_MEM_ERR;
1826  }
1827  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 21,
1828  SHA_DIGEST_LENGTH, S);
1829 
1830  dsasig = DSA_SIG_new();
1831  if (!dsasig) {
1832  BN_free(R);
1833  BN_free(S);
1834  return LDNS_STATUS_MEM_ERR;
1835  }
1836 # ifdef HAVE_DSA_SIG_SET0
1837  if (! DSA_SIG_set0(dsasig, R, S))
1838  return LDNS_STATUS_SSL_ERR;
1839 # else
1840  dsasig->r = R;
1841  dsasig->s = S;
1842 # endif
1843 
1844  raw_sig_len = i2d_DSA_SIG(dsasig, &raw_sig);
1845  if (raw_sig_len < 0) {
1846  DSA_SIG_free(dsasig);
1847  free(raw_sig);
1848  return LDNS_STATUS_SSL_ERR;
1849  }
1850  if (ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1851  ldns_buffer_write(target_buffer, raw_sig, (size_t)raw_sig_len);
1852  }
1853 
1854  DSA_SIG_free(dsasig);
1855  free(raw_sig);
1856 
1857  return ldns_buffer_status(target_buffer);
1858 #else
1859  (void)target_buffer; (void)sig_rdf;
1861 #endif
1862 }
1863 
1864 #ifdef USE_ECDSA
1865 #ifndef S_SPLINT_S
1866 ldns_rdf *
1868  const long sig_len, int num_bytes)
1869 {
1870  ECDSA_SIG* ecdsa_sig;
1871  const BIGNUM *r, *s;
1872  unsigned char *data = (unsigned char*)ldns_buffer_begin(sig);
1873  ldns_rdf* rdf;
1874  ecdsa_sig = d2i_ECDSA_SIG(NULL, (const unsigned char **)&data, sig_len);
1875  if(!ecdsa_sig) return NULL;
1876 
1877 #ifdef HAVE_ECDSA_SIG_GET0
1878  ECDSA_SIG_get0(ecdsa_sig, &r, &s);
1879 #else
1880  r = ecdsa_sig->r;
1881  s = ecdsa_sig->s;
1882 #endif
1883  /* "r | s". */
1884  if(BN_num_bytes(r) > num_bytes ||
1885  BN_num_bytes(s) > num_bytes) {
1886  ECDSA_SIG_free(ecdsa_sig);
1887  return NULL; /* numbers too big for passed curve size */
1888  }
1889  data = LDNS_XMALLOC(unsigned char, num_bytes*2);
1890  if(!data) {
1891  ECDSA_SIG_free(ecdsa_sig);
1892  return NULL;
1893  }
1894  /* write the bignums (in big-endian) a little offset if the BN code
1895  * wants to write a shorter number of bytes, with zeroes prefixed */
1896  memset(data, 0, num_bytes*2);
1897  BN_bn2bin(r, data+num_bytes-BN_num_bytes(r));
1898  BN_bn2bin(s, data+num_bytes*2-BN_num_bytes(s));
1899  rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, (size_t)(num_bytes*2), data);
1900  ECDSA_SIG_free(ecdsa_sig);
1901  return rdf;
1902 }
1903 
1906  const ldns_rdf *sig_rdf)
1907 {
1908  /* convert from two BIGNUMs in the rdata buffer, to ASN notation.
1909  * ASN preable: 30440220 <R 32bytefor256> 0220 <S 32bytefor256>
1910  * the '20' is the length of that field (=bnsize).
1911  * the '44' is the total remaining length.
1912  * if negative, start with leading zero.
1913  * if starts with 00s, remove them from the number.
1914  */
1915  uint8_t pre[] = {0x30, 0x44, 0x02, 0x20};
1916  int pre_len = 4;
1917  uint8_t mid[] = {0x02, 0x20};
1918  int mid_len = 2;
1919  int raw_sig_len, r_high, s_high, r_rem=0, s_rem=0;
1920  long bnsize = (long)ldns_rdf_size(sig_rdf) / 2;
1921  uint8_t* d = ldns_rdf_data(sig_rdf);
1922  /* if too short, or not even length, do not bother */
1923  if(bnsize < 16 || (size_t)bnsize*2 != ldns_rdf_size(sig_rdf))
1924  return LDNS_STATUS_ERR;
1925  /* strip leading zeroes from r (but not last one) */
1926  while(r_rem < bnsize-1 && d[r_rem] == 0)
1927  r_rem++;
1928  /* strip leading zeroes from s (but not last one) */
1929  while(s_rem < bnsize-1 && d[bnsize+s_rem] == 0)
1930  s_rem++;
1931 
1932  r_high = ((d[0+r_rem]&0x80)?1:0);
1933  s_high = ((d[bnsize+s_rem]&0x80)?1:0);
1934  raw_sig_len = pre_len + r_high + bnsize - r_rem + mid_len +
1935  s_high + bnsize - s_rem;
1936  if(ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1937  ldns_buffer_write_u8(target_buffer, pre[0]);
1938  ldns_buffer_write_u8(target_buffer, raw_sig_len-2);
1939  ldns_buffer_write_u8(target_buffer, pre[2]);
1940  ldns_buffer_write_u8(target_buffer, bnsize + r_high - r_rem);
1941  if(r_high)
1942  ldns_buffer_write_u8(target_buffer, 0);
1943  ldns_buffer_write(target_buffer, d+r_rem, bnsize-r_rem);
1944  ldns_buffer_write(target_buffer, mid, mid_len-1);
1945  ldns_buffer_write_u8(target_buffer, bnsize + s_high - s_rem);
1946  if(s_high)
1947  ldns_buffer_write_u8(target_buffer, 0);
1948  ldns_buffer_write(target_buffer, d+bnsize+s_rem, bnsize-s_rem);
1949  }
1950  return ldns_buffer_status(target_buffer);
1951 }
1952 
1953 #endif /* S_SPLINT_S */
1954 #endif /* USE_ECDSA */
1955 #endif /* HAVE_SSL */
void ldns_buffer_free(ldns_buffer *buffer)
frees the buffer.
Definition: buffer.c:137
bool ldns_buffer_reserve(ldns_buffer *buffer, size_t amount)
ensures BUFFER can contain at least AMOUNT more bytes.
Definition: buffer.c:79
ldns_buffer * ldns_buffer_new(size_t capacity)
creates a new buffer with the specified capacity.
Definition: buffer.c:16
#define LDNS_MIN_BUFLEN
number of initial bytes in buffer of which we cannot tell the size before hand
Definition: buffer.h:33
#define ATTR_UNUSED(x)
Definition: common.h:69
int ldns_dname_compare(const ldns_rdf *dname1, const ldns_rdf *dname2)
Compares the two dname rdf's according to the algorithm for ordering in RFC4034 Section 6.
Definition: dname.c:359
void ldns_dname2canonical(const ldns_rdf *rd)
Put a dname into canonical fmt - ie.
Definition: dname.c:280
ldns_rdf * ldns_dname_left_chop(const ldns_rdf *d)
chop one label off the left side of a dname.
Definition: dname.c:189
uint8_t ldns_dname_label_count(const ldns_rdf *r)
count the number of labels inside a LDNS_RDF_DNAME type rdf.
Definition: dname.c:214
ldns_status ldns_dname_cat(ldns_rdf *rd1, const ldns_rdf *rd2)
concatenates rd2 after rd1 (rd2 is copied, rd1 is modified)
Definition: dname.c:90
ldns_rdf * ldns_dname_label(const ldns_rdf *rdf, uint8_t labelpos)
look inside the rdf and if it is an LDNS_RDF_TYPE_DNAME try and retrieve a specific label.
Definition: dname.c:560
ldns_rdf * ldns_dname_new_frm_str(const char *str)
creates a new dname rdf from a string.
Definition: dname.c:268
int ldns_digest_evp(const unsigned char *data, unsigned int len, unsigned char *dest, const EVP_MD *md)
Utility function to calculate hash using generic EVP_MD pointer.
Definition: dnssec.c:487
int ldns_dnssec_default_delete_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1727
RSA * ldns_key_buf2rsa(const ldns_buffer *key)
converts a buffer holding key material to a RSA key in openssl.
Definition: dnssec.c:412
ldns_rdf * ldns_nsec_get_bitmap(const ldns_rr *nsec)
Returns the rdata field that contains the bitmap of the covered types of the given NSEC record.
Definition: dnssec.c:89
ldns_rr * ldns_dnssec_create_nsec3(const ldns_dnssec_name *from, const ldns_dnssec_name *to, const ldns_rdf *zone_name, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, const uint8_t *salt)
Creates NSEC3.
Definition: dnssec.c:867
ldns_rr * ldns_create_nsec3(const ldns_rdf *cur_owner, const ldns_rdf *cur_zone, const ldns_rr_list *rrs, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, const uint8_t *salt, bool emptynonterminal)
Definition: dnssec.c:1176
uint16_t ldns_nsec3_iterations(const ldns_rr *nsec3_rr)
Returns the number of hash iterations used in the given NSEC3 RR.
Definition: dnssec.c:1290
bool ldns_dnssec_pkt_has_rrsigs(const ldns_pkt *pkt)
Checks whether the packet contains rrsigs.
Definition: dnssec.c:204
void ldns_rr_list_sort_nsec3(ldns_rr_list *unsorted)
sort nsec3 list
Definition: dnssec.c:1702
ldns_status ldns_convert_ecdsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (from DNS) to a buffer with the signature in ASN1 format as openssl ...
Definition: dnssec.c:1905
ldns_rdf * ldns_convert_dsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
Converts the DSA signature from ASN1 representation (RFC2459, as used by OpenSSL) to raw signature da...
Definition: dnssec.c:1744
ldns_rr * ldns_dnssec_get_dnskey_for_rrsig(const ldns_rr *rrsig, const ldns_rr_list *rrs)
Returns the DNSKEY that corresponds to the given RRSIG rr from the list, if any.
Definition: dnssec.c:62
ldns_rr * ldns_dnssec_get_rrsig_for_name_and_type(const ldns_rdf *name, const ldns_rr_type type, const ldns_rr_list *rrs)
Returns the first RRSIG rr that corresponds to the rrset with the given name and type.
Definition: dnssec.c:34
int ldns_dnssec_default_replace_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1735
void ldns_nsec3_add_param_rdfs(ldns_rr *rr, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, const uint8_t *salt)
Sets all the NSEC3 options.
Definition: dnssec.c:1105
ldns_rdf * ldns_convert_ecdsa_rrsig_asn1len2rdf(const ldns_buffer *sig, const long sig_len, int num_bytes)
Converts the ECDSA signature from ASN1 representation (as used by OpenSSL) to raw signature data as u...
Definition: dnssec.c:1867
int ldns_dnssec_default_add_to_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1711
RSA * ldns_key_buf2rsa_raw(const unsigned char *key, size_t len)
Like ldns_key_buf2rsa, but uses raw buffer.
Definition: dnssec.c:419
uint16_t ldns_calc_keytag_raw(const uint8_t *key, size_t keysize)
Calculates keytag of DNSSEC key, operates on wireformat rdata.
Definition: dnssec.c:307
uint16_t ldns_calc_keytag(const ldns_rr *key)
calculates a keytag of a key for use in DNSSEC.
Definition: dnssec.c:277
uint8_t ldns_nsec3_salt_length(const ldns_rr *nsec3_rr)
Returns the length of the salt used in the given NSEC3 RR.
Definition: dnssec.c:1316
int ldns_dnssec_default_leave_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1719
uint8_t ldns_nsec3_flags(const ldns_rr *nsec3_rr)
Returns flags field.
Definition: dnssec.c:1271
ldns_rr * ldns_dnssec_create_nsec(const ldns_dnssec_name *from, const ldns_dnssec_name *to, ldns_rr_type nsec_type)
Creates NSEC.
Definition: dnssec.c:813
bool ldns_nsec_bitmap_covers_type(const ldns_rdf *bitmap, ldns_rr_type type)
Check if RR type t is enumerated and set in the RR type bitmap rdf.
Definition: dnssec.c:1391
ldns_rr * ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
Create a NSEC record.
Definition: dnssec.c:956
uint8_t * ldns_nsec3_salt_data(const ldns_rr *nsec3_rr)
Returns the salt bytes used in the given NSEC3 RR.
Definition: dnssec.c:1327
bool ldns_nsec3_optout(const ldns_rr *nsec3_rr)
Returns true if the opt-out flag has been set in the given NSEC3 RR.
Definition: dnssec.c:1284
ldns_rdf * ldns_dnssec_create_nsec_bitmap(ldns_rr_type rr_type_list[], size_t size, ldns_rr_type nsec_type)
Create the type bitmap for an NSEC(3) record.
Definition: dnssec.c:717
ldns_status ldns_convert_dsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (in rfc2536 format) to a buffer with the signature in rfc2459 format...
Definition: dnssec.c:1805
ldns_status ldns_pkt_verify_time(const ldns_pkt *p, ldns_rr_type t, const ldns_rdf *o, const ldns_rr_list *k, const ldns_rr_list *s, time_t check_time, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1557
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_name_and_type(const ldns_pkt *pkt, const ldns_rdf *name, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given name and type.
Definition: dnssec.c:223
uint8_t ldns_nsec3_algorithm(const ldns_rr *nsec3_rr)
Returns the hash algorithm used in the given NSEC3 RR.
Definition: dnssec.c:1258
ldns_status ldns_nsec_bitmap_set_type(ldns_rdf *bitmap, ldns_rr_type type)
Checks if RR type t is enumerated in the type bitmap rdf and sets the bit.
Definition: dnssec.c:1428
ldns_rdf * ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
Returns the bitmap specifying the covered types of the given NSEC3 RR.
Definition: dnssec.c:1356
DSA * ldns_key_buf2dsa_raw(const unsigned char *key, size_t len)
Like ldns_key_buf2dsa, but uses raw buffer.
Definition: dnssec.c:343
ldns_status ldns_nsec_bitmap_clear_type(ldns_rdf *bitmap, ldns_rr_type type)
Checks if RR type t is enumerated in the type bitmap rdf and clears the bit.
Definition: dnssec.c:1466
ldns_rdf * ldns_nsec3_hash_name_frm_nsec3(const ldns_rr *nsec, const ldns_rdf *name)
Calculates the hashed name using the parameters of the given NSEC3 RR.
Definition: dnssec.c:1366
ldns_status ldns_pkt_verify(const ldns_pkt *p, ldns_rr_type t, const ldns_rdf *o, const ldns_rr_list *k, const ldns_rr_list *s, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1624
ldns_rdf * ldns_dnssec_nsec3_closest_encloser(const ldns_rdf *qname, ldns_rr_type qtype __attribute__((unused)), const ldns_rr_list *nsec3s)
Definition: dnssec.c:102
ldns_rr * ldns_key_rr2ds(const ldns_rr *key, ldns_hash h)
returns a new DS rr that represents the given key rr.
Definition: dnssec.c:506
ldns_status ldns_dnssec_chain_nsec3_list(ldns_rr_list *nsec3_rrs)
chains nsec3 list
Definition: dnssec.c:1632
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_type(const ldns_pkt *pkt, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given type.
Definition: dnssec.c:250
ldns_rdf * ldns_nsec3_next_owner(const ldns_rr *nsec3_rr)
Returns the first label of the next ownername in the NSEC3 chain (ie.
Definition: dnssec.c:1346
DSA * ldns_key_buf2dsa(const ldns_buffer *key)
converts a buffer holding key material to a DSA key in openssl.
Definition: dnssec.c:336
ldns_rdf * ldns_nsec3_salt(const ldns_rr *nsec3_rr)
Returns the salt used in the given NSEC3 RR.
Definition: dnssec.c:1304
ldns_rdf * ldns_nsec3_hash_name(const ldns_rdf *name, uint8_t algorithm, uint16_t iterations, uint8_t salt_length, const uint8_t *salt)
Calculates the hashed name using the given parameters.
Definition: dnssec.c:1006
bool ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
Checks coverage of NSEC(3) RR name span Remember that nsec and name must both be in canonical form (i...
Definition: dnssec.c:1506
int qsort_rr_compare_nsec3(const void *a, const void *b)
compare for nsec3 sort
Definition: dnssec.c:1685
int ldns_dnssec_rrsets_contains_type(const ldns_dnssec_rrsets *rrsets, ldns_rr_type type)
returns whether a rrset of the given type is found in the rrsets.
Definition: dnssec.c:799
This module contains base functions for DNSSEC operations (RFC4033 t/m RFC4035).
#define LDNS_SIGNATURE_LEAVE_ADD_NEW
return values for the old-signature callback
Definition: dnssec.h:47
#define LDNS_SIGNATURE_REMOVE_NO_ADD
Definition: dnssec.h:50
#define LDNS_SIGNATURE_REMOVE_ADD_NEW
Definition: dnssec.h:49
#define LDNS_SIGNATURE_LEAVE_NO_ADD
Definition: dnssec.h:48
ldns_status ldns_verify_time(const ldns_rr_list *rrset, const ldns_rr_list *rrsig, const ldns_rr_list *keys, time_t check_time, ldns_rr_list *good_keys)
Verifies a list of signatures for one rrset.
ldns_rdf * ldns_dnssec_name_name(const ldns_dnssec_name *name)
Returns the domain name of the given dnssec_name structure.
Definition: dnssec_zone.c:394
const char * ldns_get_errorstr_by_id(ldns_status err)
look up a descriptive text by each error.
Definition: error.c:164
@ LDNS_STATUS_CRYPTO_ALGO_NOT_IMPL
Definition: error.h:53
@ LDNS_STATUS_SSL_ERR
Definition: error.h:36
@ LDNS_STATUS_ERR
Definition: error.h:37
@ LDNS_STATUS_MEM_ERR
Definition: error.h:34
@ LDNS_STATUS_TYPE_NOT_IN_BITMAP
Definition: error.h:127
@ LDNS_STATUS_SYNTAX_RDATA_ERR
Definition: error.h:83
@ LDNS_STATUS_OK
Definition: error.h:26
enum ldns_enum_status ldns_status
Definition: error.h:134
void ldns_rdf_print(FILE *output, const ldns_rdf *rdf)
Prints the data in the rdata field to the given file stream (in presentation format)
Definition: host2str.c:2559
char * ldns_rdf2str(const ldns_rdf *rdf)
Converts the data in the rdata field to presentation format and returns that as a char *.
Definition: host2str.c:2441
ldns_status ldns_rdf2buffer_wire(ldns_buffer *buffer, const ldns_rdf *rdf)
Copies the rdata data to the buffer in wire format.
Definition: host2wire.c:109
ldns_status ldns_rr_rdata2buffer_wire(ldns_buffer *buffer, const ldns_rr *rr)
Converts an rr's rdata to wireformat, while excluding the ownername and all the stuff before the rdat...
Definition: host2wire.c:314
int ldns_key_EVP_load_gost_id(void)
Get the PKEY id for GOST, loads GOST into openssl as a side effect.
Definition: keys.c:139
@ LDNS_RSAMD5
Definition: keys.h:46
enum ldns_enum_hash ldns_hash
Definition: keys.h:84
@ LDNS_HASH_GOST
Definition: keys.h:81
@ LDNS_SHA256
Definition: keys.h:80
@ LDNS_SHA1
Definition: keys.h:79
@ LDNS_SHA384
Definition: keys.h:82
Including this file will include all ldns files, and define some lookup tables.
ldns_rr_list * ldns_pkt_authority(const ldns_pkt *packet)
Return the packet's authority section.
Definition: packet.c:136
uint16_t ldns_pkt_ancount(const ldns_pkt *packet)
Return the packet's an count.
Definition: packet.c:106
ldns_rr_list * ldns_pkt_rr_list_by_name_and_type(const ldns_pkt *packet, const ldns_rdf *ownername, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type and type from a packet.
Definition: packet.c:340
ldns_rr_list * ldns_pkt_answer(const ldns_pkt *packet)
Return the packet's answer section.
Definition: packet.c:130
uint16_t ldns_pkt_nscount(const ldns_pkt *packet)
Return the packet's ns count.
Definition: packet.c:112
ldns_rr_list * ldns_pkt_rr_list_by_type(const ldns_pkt *packet, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type from a packet.
Definition: packet.c:304
#define LDNS_MAX_PACKETLEN
Definition: packet.h:24
@ LDNS_SECTION_ANY_NOQUESTION
used to get all non-question rrs from a packet
Definition: packet.h:282
ldns_rdf_type ldns_rdf_get_type(const ldns_rdf *rd)
returns the type of the rdf.
Definition: rdata.c:31
void ldns_rdf_deep_free(ldns_rdf *rd)
frees a rdf structure and frees the data.
Definition: rdata.c:230
ldns_rdf * ldns_rdf_new(ldns_rdf_type type, size_t size, void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:179
uint16_t ldns_rdf2native_int16(const ldns_rdf *rd)
returns the native uint16_t representation from the rdf.
Definition: rdata.c:84
ldns_rdf * ldns_native2rdf_int16(ldns_rdf_type type, uint16_t value)
returns the rdf containing the native uint16_t representation.
Definition: rdata.c:132
uint8_t ldns_rdf2native_int8(const ldns_rdf *rd)
returns the native uint8_t representation from the rdf.
Definition: rdata.c:70
size_t ldns_rdf_size(const ldns_rdf *rd)
returns the size of the rdf.
Definition: rdata.c:24
uint8_t * ldns_rdf_data(const ldns_rdf *rd)
returns the data of the rdf.
Definition: rdata.c:38
void ldns_rdf_free(ldns_rdf *rd)
frees a rdf structure, leaving the data pointer intact.
Definition: rdata.c:241
int ldns_rdf_compare(const ldns_rdf *rd1, const ldns_rdf *rd2)
compares two rdf's on their wire formats.
Definition: rdata.c:654
ldns_rdf * ldns_rdf_clone(const ldns_rdf *rd)
clones a rdf structure.
Definition: rdata.c:222
ldns_rdf * ldns_rdf_new_frm_data(ldns_rdf_type type, size_t size, const void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:193
#define LDNS_RDF_SIZE_WORD
Definition: rdata.h:34
@ LDNS_RDF_TYPE_B64
b64 string
Definition: rdata.h:68
@ LDNS_RDF_TYPE_BITMAP
Definition: rdata.h:146
@ LDNS_RDF_TYPE_NSEC3_SALT
nsec3 hash salt
Definition: rdata.h:109
@ LDNS_RDF_TYPE_HEX
hex string
Definition: rdata.h:70
@ LDNS_RDF_TYPE_INT8
8 bits
Definition: rdata.h:52
@ LDNS_RDF_TYPE_INT16
16 bits
Definition: rdata.h:54
@ LDNS_RDF_TYPE_TYPE
a RR type
Definition: rdata.h:74
#define LDNS_NSEC3_VARS_OPTOUT_MASK
Definition: rdata.h:40
ldns_rr * ldns_rr_list_rr(const ldns_rr_list *rr_list, size_t nr)
returns a specific rr of an rrlist.
Definition: rr.c:985
uint32_t ldns_rr_ttl(const ldns_rr *rr)
returns the ttl of an rr structure.
Definition: rr.c:926
ldns_rdf * ldns_rr_owner(const ldns_rr *rr)
returns the owner name of an rr structure.
Definition: rr.c:914
ldns_rr_type ldns_rdf2rr_type(const ldns_rdf *rd)
convert an rdf of type LDNS_RDF_TYPE_TYPE to an actual LDNS_RR_TYPE.
Definition: rr.c:2729
void ldns_rr_list_deep_free(ldns_rr_list *rr_list)
frees an rr_list structure and all rrs contained therein.
Definition: rr.c:1015
void ldns_rr_free(ldns_rr *rr)
frees an RR structure
Definition: rr.c:75
void ldns_rr_set_owner(ldns_rr *rr, ldns_rdf *owner)
sets the owner in the rr structure.
Definition: rr.c:799
ldns_rr * ldns_rr_new_frm_type(ldns_rr_type t)
creates a new rr structure, based on the given type.
Definition: rr.c:42
void ldns_rr_set_type(ldns_rr *rr, ldns_rr_type rr_type)
sets the type in the rr.
Definition: rr.c:823
ldns_rdf * ldns_rr_set_rdf(ldns_rr *rr, const ldns_rdf *f, size_t position)
sets a rdf member, it will be set on the position given.
Definition: rr.c:835
size_t ldns_rr_list_rr_count(const ldns_rr_list *rr_list)
returns the number of rr's in an rr_list.
Definition: rr.c:952
ldns_rr_type ldns_rr_get_type(const ldns_rr *rr)
returns the type of the rr.
Definition: rr.c:938
void ldns_rr_set_ttl(ldns_rr *rr, uint32_t ttl)
sets the ttl in the rr structure.
Definition: rr.c:811
ldns_rr_class ldns_rr_get_class(const ldns_rr *rr)
returns the class of the rr.
Definition: rr.c:944
void ldns_rr_set_class(ldns_rr *rr, ldns_rr_class rr_class)
sets the class in the rr.
Definition: rr.c:829
ldns_rr_list * ldns_rr_list_subtype_by_rdf(const ldns_rr_list *l, const ldns_rdf *r, size_t pos)
Return the rr_list which matches the rdf at position field.
Definition: rr.c:1093
bool ldns_rr_push_rdf(ldns_rr *rr, const ldns_rdf *f)
sets rd_field member, it will be placed in the next available spot.
Definition: rr.c:852
ldns_rdf * ldns_rr_rdf(const ldns_rr *rr, size_t nr)
returns the rdata field member counter.
Definition: rr.c:904
ldns_rr * ldns_rr_new(void)
creates a new rr structure.
Definition: rr.c:24
enum ldns_enum_rr_type ldns_rr_type
Definition: rr.h:241
@ LDNS_RR_TYPE_RRSIG
DNSSEC.
Definition: rr.h:170
@ LDNS_RR_TYPE_DNSKEY
Definition: rr.h:172
@ LDNS_RR_TYPE_SOA
marks the start of a zone of authority
Definition: rr.h:90
@ LDNS_RR_TYPE_NSEC
Definition: rr.h:171
@ LDNS_RR_TYPE_DS
RFC4034, RFC3658.
Definition: rr.h:164
@ LDNS_RR_TYPE_KEY
2535typecode
Definition: rr.h:128
@ LDNS_RR_TYPE_NSEC3PARAM
Definition: rr.h:177
@ LDNS_RR_TYPE_NSEC3
Definition: rr.h:176
@ LDNS_RR_TYPE_NS
an authoritative name server
Definition: rr.h:82
ldns_rdf * ldns_rr_rrsig_keytag(const ldns_rr *r)
returns the keytag of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:183
ldns_rdf * ldns_rr_rrsig_typecovered(const ldns_rr *r)
returns the type covered of a LDNS_RR_TYPE_RRSIG rr
Definition: rr_functions.c:111
ldns_rdf * ldns_rr_rrsig_signame(const ldns_rr *r)
returns the signers name of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:195
unsigned char * ldns_sha1(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha1.c:171
#define LDNS_SHA1_DIGEST_LENGTH
Definition: sha1.h:9
#define R(b, x)
Definition: sha2.c:191
unsigned char * ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:624
#define LDNS_SHA256_DIGEST_LENGTH
Definition: sha2.h:70
ldns_status ldns_str2rdf_b32_ext(ldns_rdf **rd, const char *str)
convert the string with the b32 ext hex data into wireformat
Definition: str2host.c:613
ldns_status ldns_str2rdf_dname(ldns_rdf **d, const char *str)
convert a dname string into wireformat
Definition: str2host.c:311
implementation of buffers to ease operations
Definition: buffer.h:51
ldns_rdf * hashed_name
pointer to store the hashed name (only used when in an NSEC3 zone
Definition: dnssec_zone.h:85
ldns_dnssec_rrsets * rrsets
The rrsets for this name.
Definition: dnssec_zone.h:63
ldns_dnssec_rrsets * next
Definition: dnssec_zone.h:37
DNS packet.
Definition: packet.h:234
Resource record data field.
Definition: rdata.h:178
List or Set of Resource Records.
Definition: rr.h:336
ldns_rr ** _rrs
Definition: rr.h:339
Resource Record.
Definition: rr.h:308
int ldns_b32_ntop_extended_hex(const uint8_t *src, size_t src_sz, char *dst, size_t dst_sz)
Definition: util.c:594
#define LDNS_FREE(ptr)
Definition: util.h:60
#define LDNS_CALLOC(type, count)
Definition: util.h:53
#define LDNS_XMALLOC(type, count)
Definition: util.h:51